

Reduced Basis and Domain Decomposition for Maxwell's Equations

Reduced Basis Summer School 2013 - Kopp

Andreas Buhr

20. August 2013

Simulating a Chip Carrier in a Flip Chip Package

About this talk

- I just started working on my PhD.
- There are no results yet, everything I show is just ideas.
- All screenshots I show are made with CST Studio Suite.
- The chip carrier shown in this presentation is from a CAD simulation tool benchmark published by IBM.

Chip Carrier, seen from below

living knowledg

Chip Carrier, seen from below

Chip Carrier, seen from below

distance between two connectors $\approx 0.2 mm$

distance between two connectors $\approx 0.2mm \\ \approx 3 \text{ human hairs}$

Andreas Buhr

RB and DD for Maxwell's

thickness of traces $\approx 0.025 mm$

thickness of traces $\approx 0.025 mm$ $\approx \frac{1}{3}$ human hair

living knowledg

Quantity of Interest: Transfer Function

Andreas Buhr

Solution of Maxwell's Equations:

Quantities in Maxwell's Equations:

- E electric field
- D electric flux
- H magnetic field
- B magnetic flux
- ρ charge density
- ϵ electric permittivity
- μ magnetic permeability

$$\nabla \times \frac{1}{\mu} \nabla \times E + \frac{\partial^2}{\partial t^2} \epsilon E = -\frac{\partial}{\partial t} j \tag{7}$$

$$\nabla \times \frac{1}{\mu} \nabla \times E + \frac{\partial^2}{\partial t^2} \epsilon E = -\frac{\partial}{\partial t} j$$
(7)

With time harmonic ansatz: $E(x, t) = Re(E(x, \omega) \cdot e^{i\omega t})$

$$\nabla \times \frac{1}{\mu} \nabla \times E + \frac{\partial^2}{\partial t^2} \epsilon E = -\frac{\partial}{\partial t} j \tag{7}$$

With time harmonic ansatz: $E(x, t) = Re(E(x, \omega) \cdot e^{i\omega t})$

$$\nabla \times \frac{1}{\mu} \nabla \times E - \omega^2 \epsilon E = -i\omega j \tag{8}$$

$$\nabla \times \frac{1}{\mu} \nabla \times E - \omega^2 \epsilon E = -i\omega j \tag{9}$$

$$\nabla \times \frac{1}{\mu} \nabla \times E - \omega^2 \epsilon E = -i\omega j \tag{9}$$

The parametrization is in ω. We always need solutions in a range, e.g. from o to 10 GHz:

 $\omega \in [0, 10^{10}]$

living knowledge

$$\nabla \times \frac{1}{\mu} \nabla \times E - \omega^2 \epsilon E = -i\omega j \tag{9}$$

The parametrization is in ω. We always need solutions in a range, e.g. from o to 10 GHz:

$$\omega \in [0, 10^{10}]$$

► Note that operator is affin separable and linear.

$$\nabla \times \frac{1}{\mu} \nabla \times E - \omega^2 \epsilon E = -i\omega j \tag{9}$$

The parametrization is in ω. We always need solutions in a range, e.g. from o to 10 GHz:

$$\omega \in [0, 10^{10}]$$

- ► Note that operator is affin separable and linear.
- Metal is modelled as Dirichlet boundary condition:

$$E \times n = 0$$

where *n* is the outer normal vector on the metal surface.

Main Motivation

- Chip is not simulated once, but multiple times with small changes.
- Changes often cannot be described as parametrized geometries.
- Changes are mostly local.
- Idea: Create localized basis. After local change, only regenerate basis in changed region.

Domain Decomposition

Creating quite small domains, but much larger than geometric details. $O(10^9)$ unknowns in full system.

Example Domain, GND

Example Domain, Power

living knowledge WWU Münster

Example Domain With Oversampling

Example Domain With Oversampling

Example Domain With Oversampling, from Top

Example Domain

Following SCRBE by Patera et al.

- We need a reduced basis at the domain interfaces.
- These interface basis functions are extended to the volume.
- Maybe we add bubble functions.

How to create the reduced basis for the interfaces?

Imagine Signal through interface

Interface function 1 (not real data)

Interface function 1, zoomed (not real data)

Interface function 1, zoomed even more (not real data)

Imagine Potential between plates

Interface function 2 (not real data)

Interface function 2, zoomed (not real data)

Inspired by GMsFEM by Efendiev et al.[2, 4, 3, 1]

- Take interface in question plus an oversampling.
- Apply all possible boundary conditions.
- Create a basis which can represent (up to ε) the solutions obtained at the interface.

Interface plus Oversampling

Interface plus Oversampling

Summary

- To achieve *local modifyability* and *scalability* localized interfaces bases and localized volume bases should be created in a completely localized and communication-free algorithm.
- Interface bases should be created by taking each interface with an oversampling, applying all possible boundary conditions and constructing an interface basis based on the solutions.
- Volume bases should be created by extending interface functions to the volume.

References

Eric T. Chung, Yalchin Efendiev, and Wing Tat Leung.

Generalized multiscale finite element methods for wave propagation in heterogeneous media. July 2013.

Yalchin Efendiev, Juan Galvis, and Thomas Y. Hou.

Generalized multiscale finite element methods (gmsfem). January 2013.

Yalchin Efendiev, Juan Galvis, Guanglian Li, and Michael Presho.

Generalized multiscale finite element methods. nonlinear elliptic equations. April 2013.

Yalchin Efendiev, Juan Galvis, Guanglian Li, and Michael Presho.

Generalized multiscale finite element methods. oversampling strategies. April 2013.