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Abstract

Localized model order reduction methods have attracted significant attention during the last years. They | can perform well. Experiments have shown two dimensional time-harmonic Maxwell’s to be amenable to
have favorable parallelization properties and promise to perform well on cloud architectures, which become | localized model reduction [2].

more and more commonplace. We introduced ArbiLoMod [1], a localized reduced basis method targeted at | However, Galerkin projection of an inf-sup stable problem is not guaranteed to be stable. Existing stabi-
the important use case of changing problem definition, wherein the changes are of local nature. Thisisa | lization methods for the reduced basis method involve global computations and are thus not applicable
common situation in simulation software used by engineers optimizing a CAD model. in a localized setting. Replacing the Galerkin projection with the minimization of a localized a posteriori
An especially interesting application is the simulation of electromagnetic fields in printed circuit boards, | error estimator provides a stable reduction for inf-sup stable projects which retains all the advantageous
which is necessary to design high frequency electronics. The simulation of the electromagnetic fields can | properties of localized model order reduction. It allows for an offline-online decomposition and requires no
be done by solving the time-harmonic Maxwell’s equations, which results in a parameterized, inf-sup stable | global computations in the unreduced space.

problem which has to be solved for many parameters. In this multi-query setting, the reduced basis method

Modelling

Maxwell’s equations:
Weak formulation in H (curl):

) Time harmonic Maxwell’s equations:
V-D=p V X -V x E — w?FE = —iwj a(u,v,w):;/Q(qu)-(va)dx—we/@u-vdx
V x H = 8D + j K O
V-B =0 with angular frequency w. flo,w) = —zw/Q] v dx

Notation: | E: electric field | D: electric flux | H: magnetic field | B: magnetic flux | p: charge density | j: current density | e: electric permittivity | pu: magnetic permeability |

Target Problem Test Problem

Dirichlet

Signal integrity analysis in high speed PCBs (Olimex OLinuXino A64 as example)
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Localized a Posteriori Error Estimator Estimator Minimization

The error estimator A is defined as a constant times the Euclidean norm of the local dual space norms of

the residual [1]. e The full solution u is defined to be the solution of
e 3. inf-sup constant findu € V s.t.
w) = f(v; Yv e V.
With o c;y: stability constant associated with par- afw, v;w) = flo;w) v e
Np 2 tition of unity e The reduced solution u is defined to be the solution of
A= lCPU D R@I, |- e Np: number of domains find i € Vs, ~
5] — i D:- a(u,v;w) = f(v;w) Yo e V.
: u): resi fuinth
it holds > Fe restelEl ef i tne e val spa e The estimator minimization solution u is defined by
lu —ully < A(u). e V/;: local space on domain i R

u = argmin A(p).
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Numerical Results
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Observations References

The Galerkin projection of the inf-sup stable problem suffers from instabilities. For some basis sizes, the
error peaks. The reduction by minimization of the localized a posteriori error estimator, in contrast, does
not suffer from instabilites. However, in most cases, the Galerkin projection obtains a better solution
than the error estimator minimization procedure.

The choosen discretization approach suffers from a well known low frequency instability. For frequencies
approaching zero, the inf-sup constant gets smaller. This is reflected in the error of the estimator
minimization solution: Its error goes up as the inf-sup constant goes down. This effect is much less [2] A. Buhr, C. Engwer, M. Ohlberger, and S. Rave. ArbiLoMod: Local Solution Spaces by Random Training
strong for the Galerkin projection: Its error stays approximately constant, even though the inf-sup in Electrodynamics, pages 137—148. Springer International Publishing, Cham, 2017.

constant gets smaller.

References

[1] A. Buhr, C. Engwer, M. Ohlberger, and S. Rave. ArbiLoMod, a Simulation Technique Designed for
Arbitrary Local Modifications. SIAM J. Sci. Comput., 39(4):A1435—A1465, 2017.



