

Simulation of Electromagnetic Fields in Highly Complex Printed Circuit Boards using Localized Model Order Reduction

4th Applied Mathematics Symposium Münster

Andreas Buhr

March 16, 2018

APPLIED

MÜNSTER

MATHEMATICS

- ▶ 1.2 GHz quad-core ARM CPU
- 1 GB of RAM
- open hardware
- designed with KiCAD

KiCAD

Andreas Buhr

Localized LMOR

Main question: Do signals arrive at an acceptable quality?

Localized LMOR 4

Signal Integrity Analysis

Main question: Do signals arrive at an acceptable quality? Bit sequence: 010011010011110110010

Main question:

Do signals arrive at an acceptable quality? Bit sequence: 010011010011110110010 Signal at 1Gbps:

living knowledge WWU Münster

Bit sequence: 010011010011110110010 Signal:

Signal with frequency content < 10 GHz:

Bit sequence: 010011010011110110010 Signal:

Signal with frequency content < 1 GHz:

Bit sequence: 010011010011110110010 Signal:

Signal with frequency content < 0.5 GHz:

Bit sequence: 010011010011110110010 Signal:

Signal with frequency content < 0.3 GHz:

Time Harmonic Maxwell's Equations

$$abla imes rac{1}{\mu}
abla imes E - \omega^2 \epsilon E = -i\omega j \quad \text{in} \quad \Omega$$

Simulation in a frequency range, e.g.

$$\omega \in [0, 10^{10}]$$

Dirichlet boundary:

 $E \times n = g$ on $\partial \Omega$ (= 0 on most of $\partial \Omega$)

Resulting bilinear and linear form:

$$a(\varphi_1, \varphi_2) = \int_{\Omega} \frac{1}{\mu} (\nabla \times \varphi_1) \cdot (\nabla \times \varphi_2) - \omega^2 \varepsilon \int_{\Omega} \varphi_1 \cdot \varphi_2$$
$$f(\varphi) = -i\omega \int_{\Omega} j \cdot \varphi$$

- Setting
 - Domain Ω
 - Function space V, e.g. FE approximation of $H(\operatorname{curl}, \Omega) + B.C.$
 - (P)PDE in weak formulation

$$a(u,\varphi) = f(\varphi) \qquad \forall \varphi \in V$$

- Setting
 - Domain Ω
 - Function space V, e.g. FE approximation of $H(\operatorname{curl}, \Omega) + B.C.$
 - (P)PDE in weak formulation

$$a(u,\varphi) = f(\varphi) \qquad \forall \varphi \in V$$

Reduction

 \blacktriangleright Reduced spaces $\widetilde{V} \subset V$ and $\widetilde{W} \subset V$

$$\widetilde{V} := \operatorname{span} \{ \psi_1^a, \dots, \psi_n^a \}$$
$$\widetilde{W} := \operatorname{span} \{ \psi_1^t, \dots, \psi_n^t \}$$

• Reduced solution $\widetilde{u} \in \widetilde{V}$, s.t.

$$a(\widetilde{u},\widetilde{\varphi})=f(\widetilde{\varphi}) \qquad \forall \widetilde{\varphi}\in \widetilde{W}$$

- Setting
 - Domain Ω
 - Function space V, e.g. FE approximation of $H(\operatorname{curl}, \Omega) + B.C.$
 - (P)PDE in weak formulation

$$a(u,\varphi) = f(\varphi) \qquad \forall \varphi \in V$$

- Reduction
 - \blacktriangleright Reduced spaces $\widetilde{V} \subset V$ and $\widetilde{W} \subset V$

$$\widetilde{V} := \operatorname{span} \{ \psi_1^a, \dots, \psi_n^a \}$$
$$\widetilde{W} := \operatorname{span} \{ \psi_1^t, \dots, \psi_n^t \}$$

• Reduced solution $\widetilde{u} \in \widetilde{V}$, s.t.

$$a(\widetilde{u},\widetilde{\varphi})=f(\widetilde{\varphi}) \qquad \forall \widetilde{\varphi}\in \widetilde{W}$$

- Localized
 - $supp(\psi_i)$ much smaller than Ω
 - $supp(\psi_i)$ much larger than meshsize h

Related Fields

- Reduced Basis Methods
- Multiscale Methods
- Domain Decomposition Methods

Space Decomposition

living knowledg WWU Münster

living knowledg

Localized Reduced Basis

Space decomposition into local subspaces

$$V = \sum_{i} V_i$$
 V_i subspaces of V

Mappings to local spaces

$$P_{V_i}: V \to V_i$$

$$\sum_{i} P_{V_i}(\varphi) = \varphi \qquad \forall \varphi \in V$$

 P_{V_i} linear

living knowledge WWU Münster

Examples

- 1. in GFEM [Babuška and Melenk 1997], you could have
 - $\blacktriangleright V = H_0^1(\Omega)$
 - $V_i = H_0^1(\omega_i)$ on overlapping DD ω_i
 - P_{V_i} is multiplication with suited partition of unity
- 2. in LRBMS [Ohlberger and Schindler 2015], you could have
 - ► V is DG-space
 - $V_i = V|_{\omega_i}$ with non-overlapping DD ω_i
 - P_{V_i} is restriction on ω_i
- 3. in ArbiLoMod [Buhr, Engwer, et al. 2017], you could have

•
$$V = H_0^1(\Omega)$$

- $V_i = H_0^1(\omega_i)$ on non-overlapping DD ω_i
 - + space for domain-interfaces

Localized Reduced Basis

Space decomposition into local subspaces

$$V = \sum_{i} V_i$$
 V_i subspaces of V

Find reduced local spaces

$$\widetilde{V}_i \subset V_i$$

Construct global reduced space

$$\widetilde{V} := \sum_{i} \widetilde{V}_{i}$$

iving knowledge WWU Münster

Domain Decomposition

Domain Decomposition with 40 \times 28 = 1120 domains:

Localized LMOR 23

Domain Decomposition

For each domain ω_i (e.g. ω_{816} , yellow) we introduce an oversampling domain ω_i^* (e.g. ω_{816}^* , green)

Domain Decomposition

For each domain ω_i (e.g. ω_{816} , yellow) we introduce an oversampling domain ω_i^* (e.g. ω_{816}^* , green)

Andreas Buhr

Localized LMOR

Transfer Operators

Following [Smetana and Patera 2016] we introduce transfer operators mapping from $\partial \omega_i^*$ to ω_i .

Spaces of *a*-harmonic functions:

 $\mathcal{H}_i := \{ w \in H(\operatorname{curl}; \omega_i^*) : a(w, \varphi) = 0 \quad \forall \varphi \in H_0(\operatorname{curl}; \omega_i^*) \}$

Source spaces:

$$S_i := \{ w |_{\partial \omega_i^*} : w \in \mathcal{H}_i \}$$

Range spaces:

$$R_i := \{ w |_{\omega_i} : w \in \mathcal{H}_i \}$$

• Transfer operators $T_i: S_i \to R_i$ defined by:

$$T_i(w|_{\partial \omega_i^*}) = w|_{\omega_i} \qquad \forall w \in \mathcal{H}_i$$

Why are transfer operators interesting?

The reason is

 $u|_{\omega_i} = T_i(u|_{\partial \omega_i^*}) + u_{f,i}$

where $u_{f,i}$ is the part induced by the right hand side; $u_{f,i} \in H_0(\operatorname{curl}; \omega_i^*)$ is defined as the solution of

$$a(u_{f,i},\varphi) = f(\varphi) \qquad \forall \varphi \in H_0(\operatorname{curl};\omega_i^*).$$

- $u_{f,i}$ is cheap to compute
- $T_i(u|_{\partial \omega_i^*})$ is in the image of T_i .

Why are transfer operators interesting?

The reason is

 $u|_{\omega_i} = T_i(u|_{\partial \omega_i^*}) + u_{f,i}$

where $u_{f,i}$ is the part induced by the right hand side; $u_{f,i} \in H_0(\operatorname{curl}; \omega_i^*)$ is defined as the solution of

 $a(u_{f,i},\varphi) = f(\varphi) \qquad \forall \varphi \in H_0(\operatorname{curl};\omega_i^*).$

- $u_{f,i}$ is cheap to compute
- $T_i(u|_{\partial \omega_i^*})$ is in the image of T_i .

If we can approximate the image of T_i , we can approximate the solution on ω_i .

New goal

Generate subspaces $\widetilde{R}_i \subset R_i$ so that

$$\left\|T_i - P_{\widetilde{R}_i}T_i\right\|$$

is small. $P_{\widetilde{R}_i}:R_i\to \widetilde{R}_i \text{ is orthogonal projection}.$

living knowledge

SVD of T_i

drop index i for now...

iving knowled

28

Localized LMOR

SVD of T

If T is compact, it has a singular value decomposition

$$T(\zeta) = \sum_{j} \phi_{j} \sigma_{j}(\chi_{j}, \zeta)_{S} \quad \forall \zeta \in S$$
$$(\phi_{j}, \phi_{k})_{R} = \delta_{j,k}$$
$$(\chi_{j}, \chi_{k})_{S} = \delta_{j,k}$$

its left singular values form the optimal \widetilde{R} . With $\widetilde{R}_n := \operatorname{span}\{\phi_1, \dots, \phi_n\}$, it holds

$$\left\| T - P_{\widetilde{R}_n} T \right\| = \sigma_{n+1}$$

living knowledge

Andreas Buhr

Localized LMOR

SVD of T

If T is compact, it has a singular value decomposition

$$T(\zeta) = \sum_{j} \phi_{j} \sigma_{j} (\chi_{j}, \zeta)_{S} \qquad \forall \zeta \in S$$
$$(\phi_{j}, \phi_{k})_{R} = \delta_{j,k}$$
$$(\chi_{j}, \chi_{k})_{S} = \delta_{j,k}$$

its left singular values form the optimal \widetilde{R} . With $\widetilde{R}_n := \operatorname{span}\{\phi_1, \dots, \phi_n\}$, it holds

$$\left\|T - P_{\widetilde{R}_n}T\right\| = \sigma_{n+1}$$

Optimality

optimal to approximate the image of ${\cal T}$ not optimal to approximate the solution u

living knowledge WWU Münster

Andreas Buhr

Localized LMOR

Randomized Range Finder

In [Buhr and Smetana 2017] we applied methods from randomized linear algebra [Halko, Martinsson, and Tropp 2011] to this problem and obtained: With

$$\widetilde{R}_n := \operatorname{span}\{TD_S^{-1}\underline{r}_1, \dots, TD_S^{-1}\underline{r}_n\}$$

- ▶ \underline{r}_i : i.i.d. random vector with normal distributed entries in $\mathbb{R}^{\dim(S)}$.
- D_S^{-1} : ritz isomorphism $\mathbb{R}^{\dim(S)} \to S$.

Randomized Range Finder

In [Buhr and Smetana 2017] we applied methods from randomized linear algebra [Halko, Martinsson, and Tropp 2011] to this problem and obtained: With

$$\widetilde{R}_n := \operatorname{span}\{TD_S^{-1}\underline{r}_1, \dots, TD_S^{-1}\underline{r}_n\}$$

• \underline{r}_i : i.i.d. random vector with normal distributed entries in $\mathbb{R}^{\dim(S)}$. • D_S^{-1} : ritz isomorphism $\mathbb{R}^{\dim(S)} \to S$. it holds

$$\mathbb{E}\|T - P_{R^n}T\| \le \sqrt{\frac{\lambda_{max}^M}{\lambda_{min}^M}} \frac{\lambda_{max}^M}{\lambda_{min}^M} \min_{\substack{k+p=n\\k\ge 2, p\ge 2}} \left[\left(1 + \sqrt{\frac{k}{p-1}}\right)\sigma_{k+1} + \frac{e\sqrt{n}}{p} \left(\sum_{j>k}\sigma_j^2\right)^{\frac{1}{2}} \right].$$

Randomized Range Finder

In [Buhr and Smetana 2017] we applied methods from randomized linear algebra [Halko, Martinsson, and Tropp 2011] to this problem and obtained: With

$$\widetilde{R}_n := \operatorname{span}\{TD_S^{-1}\underline{r}_1, \dots, TD_S^{-1}\underline{r}_n\}$$

• \underline{r}_i : i.i.d. random vector with normal distributed entries in $\mathbb{R}^{\dim(S)}$. • D_S^{-1} : ritz isomorphism $\mathbb{R}^{\dim(S)} \to S$. it holds

$$\mathbb{E}\|T - P_{R^n}T\| \leq \sqrt{\frac{\lambda_{max}^{M_R}}{\lambda_{min}^{M_R}} \frac{\lambda_{max}^{M_S}}{\lambda_{min}^{M_R}}} \min_{\substack{k+p=n\\k\geq 2, p\geq 2}} \left[\left(1 + \sqrt{\frac{k}{p-1}}\right)\sigma_{k+1} + \frac{e\sqrt{n}}{p} \left(\sum_{j>k}\sigma_j^2\right)^{\frac{1}{2}} \right] \cdots \\ \approx C \cdot \sqrt{n}\sigma_n$$

Randomized a posteriori error estimator

For any $\widetilde{R},$ it holds

$$\left\|T - P_{\widetilde{R}}T\right\| \le c_{\text{est}}(n_t, \varepsilon_{\text{testfail}}) \max_{i \in 1, \dots, n_t} \left\|\left(T - P_{\widetilde{R}}T\right) D_S^{-1} \underline{r}_i\right\|_R$$

with a probability greater than $(1 - \varepsilon_{testfail})$.

Randomized a posteriori error estimator

For any $\widetilde{R},$ it holds

 $\left\|T - P_{\widetilde{R}}T\right\| \leq c_{\text{est}}(n_t, \varepsilon_{\text{testfail}}) \max_{i \in 1, \dots, n_t} \left\|\left(T - P_{\widetilde{R}}T\right) D_S^{-1} \underline{r}_i\right\|_R$

with a probability greater than $(1 - \varepsilon_{testfail})$.

$$c_{\rm est}(n_t, \varepsilon_{\rm testfail}) := \left[\sqrt{2\lambda_{\min}^{M_S}} \, {\rm erf}^{-1}(\sqrt[n_t]{\varepsilon_{\rm testfail}}) \right]^{-1},$$

 \underline{r}_i are random normal vectors, and $\lambda_{min}^{\underline{M}_S}$ is the smallest eigenvalue of the matrix of the inner product in S.

Randomized a posteriori error estimator

For any \widetilde{R} , it holds

$$\left\|T - P_{\widetilde{R}}T\right\| \le c_{\text{est}}(n_t, \varepsilon_{\text{testfail}}) \max_{i \in 1, \dots, n_t} \left\| (T - P_{\widetilde{R}}T) D_S^{-1} \underline{r}_i \right\|_R$$

with a probability greater than $(1 - \varepsilon_{\text{testfail}})$.

$$c_{\rm est}(n_t, \varepsilon_{\rm testfail}) := \left[\sqrt{2\lambda_{\min}^{M_S}} \, {\rm erf}^{-1} (\sqrt[n_t]{\varepsilon_{\rm testfail}}) \right]^{-1},$$

 \underline{r}_i are random normal vectors, and $\lambda_{min}^{\underline{M}_S}$ is the smallest eigenvalue of the matrix of the inner product in S.

$$\Delta(\widetilde{R}) := c_{\text{est}}(n_t, \varepsilon_{\text{testfail}}) \max_{i \in 1, \dots, n_t} \left\| (T - P_{\widetilde{R}}T) \ D_S^{-1} \ \underline{r}_i \right\|_R$$

Theory Summary

1. Optimal spaces:

$$\sigma_{n+1} \leq \left\| T - P_{\widetilde{R}_n} T \right\| \qquad \text{for all } \widetilde{R}_n \text{ of size } n$$

2. For randomized created spaces:

 $\left\|T - P_{\widetilde{R}_n}T\right\|$ behaves like $\sqrt{n}\sigma_n$

3. Error estimator

$$\left\|T - P_{\widetilde{R}}T\right\| \le c_{\text{est}}(n_t, \varepsilon_{\text{testfail}}) \max_{i \in 1, \dots, n_t} \left\| (T - P_{\widetilde{R}}T) D_S^{-1} \underline{r}_i \right\|_R$$

Olimex A64 Discretization

- Polygon description has 273.092 vertices
- PCB dimensions: 90.0mm × 62.5mm
- meshed with hexahedrons of max. $95\mu m$ in each dimension
- 960 meshcells in x-direction,
 673 meshcells in y-direction,
 33 meshcells in z-direction.
- ▶ \approx 21 million meshcells, \approx 65 million DOFs

Staircase Meshing

We are only interested in MOR behavior, so we accept this modelling error.

Westfälische Wilhelms-Universität Münster

Localized LMOR 35

Staircase Meshing

iving knowledge WWU Münster

Stackup

iving knowledge

36

Localized LMOR

Stackup with z-Mesh

	air	350 μm	4 meshcells
	copper prepreg copper	35 μm 127 μm 35 μm	1 meshcell 2 meshcells 1 meshcell
	FR4	500 μm	6 meshcells
	copper prepreg copper	35 μm 127 μm 35 μm	1 meshcell 2 meshcells 1 meshcell
	FR4	500 μm	6 meshcells
	copper prepreg copper	35 μm 127 μm 35 μm	1 meshcell 2 meshcells 1 meshcell
	air	350 $\mu { m m}$	4 meshcells

WESTFÄLISCHE Wilhelms-Universität Münster

Stackup

ving knowledge ///U Münster

Andreas Buhr

Localized LMOR

(around 350.000 unknowns)

Localized LMOR 43

Domain 816

living knowledg

Decay of Singular Values for T_{816}

Error Estimator Decay

MÜNSTER

45

Localized LMOR

Error Estimator Decay

Adaptive Runs

Adaptive run till

$$\max_{i \in 1, \dots, n_t} \left\| (T - P_{\widetilde{R}}T) \ D_S^{-1} \ \underline{r}_i \right\|_R < 10^{-2}$$

CPU timings

living knowledg WWU Münster

Reduction

Domain	unreduced DOFs	reduced DOFs	factor
816	394422	106	3721
817	399921	121	3305
818	395745	116	3412
819	385383	120	3212
820	365149	107	3413
821	345178	88	3922
822	343729	95	3618
823	348205	138	2523
824	359842	127	2833
825	353213	107	3301
826	358154	94	3810
827	354729	88	4031
828	358521	91	3940
829	358206	94	3811
830	344408	97	3551

Summary

- Randomized range finder was applied to PCB geometry
- Within 5 to 10 minutes per domain, it is possible to create reduced spaces of dimension about 100, which are of acceptable quality.

50

Localized LMOR